Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail

نویسندگان

  • Sarah A Woodin
  • Thomas J Hilbish
  • Brian Helmuth
  • Sierra J Jones
  • David S Wethey
چکیده

Modeling the biogeographic consequences of climate change requires confidence in model predictions under novel conditions. However, models often fail when extended to new locales, and such instances have been used as evidence of a change in physiological tolerance, that is, a fundamental niche shift. We explore an alternative explanation and propose a method for predicting the likelihood of failure based on physiological performance curves and environmental variance in the original and new environments. We define the transient event margin (TEM) as the gap between energetic performance failure, defined as CTmax, and the upper lethal limit, defined as LTmax. If TEM is large relative to environmental fluctuations, models will likely fail in new locales. If TEM is small relative to environmental fluctuations, models are likely to be robust for new locales, even when mechanism is unknown. Using temperature, we predict when biogeographic models are likely to fail and illustrate this with a case study. We suggest that failure is predictable from an understanding of how climate drives nonlethal physiological responses, but for many species such data have not been collected. Successful biogeographic forecasting thus depends on understanding when the mechanisms limiting distribution of a species will differ among geographic regions, or at different times, resulting in realized niche shifts. TEM allows prediction of the likelihood of such model failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the geographical distribution of Alopecurus textilis Boiss rangeland species on basis Consensus approach of climate change in Mazandaran province

The climate changes have an important role in distribution of plant species. Statistical species distribution models (SDMs) are widely used to predict the changes in species distribution under climate change scenarios. In the peresent study, the distribution of Alopecurus textilis in the current and future climate condition (2050) under the influence of climate change and two scenarios of RCP 4...

متن کامل

Predicting the Effect of Climate Change on the Distribution of Echium Amoenum and Echium Italicum in Iran

Predicting the effect of climate change on the distribution of valuable and endangered plant species is essential for their conservation and management. In this study, the MaxEnt model and 10 environmental variables were used to predict the current and future distribution of E. amoenum and E. italicum in response to climate change. Also, to predict the effect of climate change in the future (th...

متن کامل

Predicting the Climatic Ecological Niche of Artemisia aucheri Boiss in Central Iran using Species Distribution Modeling

Changes in the geographical distribution of plants are one of the major impacts of the climate change. This study was aimed to predict the potential changes in the distribution of Artemisia aucheri Boiss in Isfahan rangelands. Therefore, six bioclimatic variables and two physiographic variables were used under the Generalized Linear Model (GLM), Flexible Denotative Analysis (FDA), Surface Range...

متن کامل

The complexity of predicting climate-induced ecological impacts

The anticipated future increases in global surface temperatures are likely to have major impacts on the distribution of species. Predicting future species’ distributions is a key area of importance in research, which is largely being addressed through the use of climate envelope models. While climate envelope models may indicate the broad direction of likely changes in distribution, they fail t...

متن کامل

Mechanistic species distribution modelling as a link between physiology and conservation

Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013